Water on Mars: isotopic constraints on exchange between the atmosphere and surface.

نویسندگان

  • D M Kass
  • Y L Yung
چکیده

Using a new measurement of the D/H fractionation efficiency and new estimates of the water loss, we calculate that Mars has the equivalent of a approximately 9 m global water layer in a reservoir that exchanges with the atmosphere. The measured D/H enrichment is about 5 times the terrestrial value, but without exchange, the atmosphere converges on an enrichment of 50 in about 0.5 Ma. Due to the large buffering reservoir and the rapid loss rate (10(-3) pr-micrometers yr-1), the small atmospheric reservoir, averaging 10 pr-micrometers, is unlikely to be in continuous isotopic equilibrium with the full 9 m exchangeable reservoir. Instead, it presumably equilibrates during periods of high obliquity; the atmospheric D/H ratio is expected to be enriched in between such periods. If isotopic exchange with a small (4 mm global layer) reservoir occurs under current conditions, it possible for the atmospheric D/H ratio to be within 10% of its long term equilibrium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Constraints on Rainfall on Ancient Mars : Oceans , Lakes , and Valley Networks

Introduction: The last five decades of Martian exploration have shown evidence for standing surface liquid water in Mars' ancient past [1]. The Vi-king, Mars Global Surveyor (MGS), and Mars Reconnaissance Orbiter (MRO) spacecraft have all observed valley networks in the equatorial and southern tropical regions of Mars [2][3]. As well, recent observations by the MRO HiRISE camera show geo-morpho...

متن کامل

On the orbital forcing of Martian water and CO2 cycles: A general circulation model study with simplified volatile schemes

[1] Variations in the Martian water and CO2 cycles with changes in orbital and rotational parameters are examined using the Geophysical Fluid Dynamics Laboratory Mars General Circulation Model. The model allows for arbitrary specification of obliquity, eccentricity, and argument of perihelion as well as the position and thickness of surface ice. Exchange of CO2 between the surface and atmospher...

متن کامل

A modeling investigation of canopy-air oxygen isotopic exchange of water vapor and carbon dioxide in a soybean field

[1] The oxygen isotopes of CO2 and H2O ( O-CO2 and O-H2O) provide unique information regarding the contribution of terrestrial vegetation to the global CO2 and H2O cycles. In this paper, a simple isotopic land surface model was used to investigate processes controlling the isotopic exchange of O-H2O and O-CO2 between a soybean ecosystem and the atmosphere. We included in a standard land surface...

متن کامل

Isotope-hydrochemistry of Arnave karstic spring and Shirin dareh dam reservoir, North Khorasan

Surface and groundwater resources such as Arnaveh karstic spring and Shirin Dareh reservoir are the main sources of drinking water and agricultural activity in the North Khorasan province, northeast of Iran. The main agents of this study are to evaluate the origin, hydrochemical and isotope characteristics of water resources and also suitability of the Shirin dareh reservoir water for drinking ...

متن کامل

Photo-induced fractionation of water isotopomers in the Martian atmosphere.

The history and size of the water reservoirs on early Mars can be constrained using isotopic ratios of deuterium to hydrogen. We present new laboratory measurements of the ultraviolet cross-sections of H2O and its isotopomers, and modeling calculations in support of a photo-induced fractionation effect (PHIFE), that reconciles a discrepancy between past theoretical modeling and recent observati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Geophysical research letters

دوره 26 24  شماره 

صفحات  -

تاریخ انتشار 1999